What goes wrong in APIs
and how to fix it:
API Design anti-patterns:

http://www.aleax.it/europll_adap.pdf

|
OOG I

When you do software...

@ ..what do you focus on?
@ functionality: "does a lot of useful stuff"
@ correctness: "few if any serious bugs"
o performance: "what it does, it does fast"
@ user interface: "looks & feels nice"

o security: "no easy target for hackers"
@ elegance: "easy and smooth to maintain”
@ ..what's missing from the above...?

@ BTW: all issues best achieved with agile,
incremental development (except security)

2

This talk

o I'll tell you what I'm going to tell you
@ then, I tell you
@ finally, I tell you what I just told you

@ now THIS is a classic Pattern, no auntie!-)

@ concrete examples: scarce, as I don't want
to make (too many) more enemies

@ except errors I made myself
@ and stuff nobody could defend (Windows)

3

Whats an API

@ "Application” (?) "Program Interface"

@ a collection of functions, data types,
protocols, events, &c, whereby any
software system X can interact with a
given software system Y

@ Y can be: a library, framework,
application, operating system, web site...

@ Y's developers are typically responsible
for designing and implementing the API

What's an Anti-pattern

@ a category of counterproductive behaviors
that are often, systematically repeated

@ can be in: business processes, project
management, design, programming, ...

@ an anti-pattern write-up should include:

@ root causes (why did it seem a good
idea at the time?)

o effects (why it's actually a bad idea)

o interactions (how it helps or hurts
other patterns [or anti-patterns])

@ remedies (suggestions for fixes)

5

API Design Antipatterns

@ the very worst APIDA: not having any API
@ the worst API's the one that's not there
@ most frequent 1: "just didn't think of it"!

@ the second worst: not having any design
o the API that "just happened”

@ worse than most other “"non-designs"
@ Too many APIs spoil the broth
@ "fear of commitment”: to design—to choose
@ inconsistency in APIs
@ ..but wait, there's more...!

6

More kinds of APIDAs

® Won't do these justice, either, but...:
@ "extremes": no balance between concerns
@ what language(s) to support?
@ excessive language dependence
@ excessive language INdependence

@ what about standard protocols/formats?
@ ignoring them blithely
@ rigidly, lavishly letting them "drive”
@ debugging, error messages, documentation
@ performance-related APIDAs

7

The very worst APIDA

@ the worst API is -- no API at all
@ people just don't think about APIs...!

@ e.g. check stackoverflow: most common Qs
@ spidering and scraping websites
@ simulating keystroke & mouse gestures

@ some of those Qs are about system testing
@ most of them are about "missing APIs"

o the APIs may not actually be there

@ = equivalent, they may be undocumented

Why "no API" is bad

@ people DO need an API
@ whether you supply it or not
o they're gonna "scrape” your UI
o or alleged-UI;-)
@ or, monkeypatch you (if no "hooks")

@ useless extra load on your system
@ rendering things that then get ignored
@ makes their lives miserable
@ every cosmetic change breaks their SW
@ gives your "competitors” a nice entry!

9

What to do instead

@ Offer an API! "Pick an API, any API"..
@ Should be easy -- you ARE "in their shoes"
@ Even a simple, weak one's better than none
® Document it! or, at least...:

@ to reduce workload, consider _examples_

@ may be easier than ftext to programmers
@ Keep docs updated!

@ wrong docs can be worse than none

@ examples can be tested & should be

If you're an unwilling APIer

@ Make life easy on yourself AND the users:

@ Follow the yellow-brick road of the "path
of least resistance": de facto standards

o for web apps, REST & JSON
@ for Windows apps, COM

@ for Mac apps, "Applescript”

@ ..wish there was ONE similarly broad
answer for Linux apps too.. ah well!-)

@ doctest, for the my-only-docs-r-examples
crowd (or as useful supplement to any doc)

The accidental API

@ an "interface" that was never actually
designed as such (also a "didn't think"...).

@ designing an interface for proper program
access is hard (though interesting) work

o (think of what you'd like to USE!)

@ "but wait, we already have one!"...
@ often what the UI uses to the backend
@ sometimes the database schema

@ "let's use that one -- look, ma, no work"!-)

Why “no design” is bad API

@ if you haven't designed what API you're
exposing, specifically in order to expose it...

@ ..then what you're exposingm is not an API,
but "internal implementation issues'!

@ what happens when you want fo change

the implementation's details?
@ either you don't (—forego improvements)
@ or you break your clients,

@ or you shoulder forever the burden of
dual implementations (real one and API)...

What to do instead

dTHINK

@...about your API
@would you like to USE it...?

8FORGET

@..your implementation
a@definitely at least its details

Wtdi: Think

@ THINK about your API!

@ "if I was an outside programmer, what
would I want to be doing? And, how?"

@ "and why?" can't hurt, by the way;-)
@ don't just think; "walk a mile in their

shoes" (e.g., your auxiliary scripts)

@ I dislike big-design-up-front, BUT...
@ ..APIs are THE exception fo this!
o (well OK, security/privacy too;-)

Wtdi: Forget

@ FORGET about your current implementation

@ as an implementation, inevitably it's chock
full of specific details, of course

@ or, think about at least 2-3 alternative
ones you might want to try in the future

@ what's common to ALL?

@ what changes w/every implementation is
"an accident"”, irrelevant to your API

@ what stays the same is "the substance”,
what really must be in the API

@ the CONCEPTS your SW is about!

16

Widi: why?

@ isn't this API design stuff a lot of work...?
@ yes, some -- BUT...
@ the ROI on API design efforts is amazing!
@ not only does it enhance your API,
@ the insight it gives on your overall

SW's design is hard to obtain otherwise

@ +: a strong API helps you properly divvy
up the system (as little as feasible "in
the core", as much as can be, "outside"!)

@ so you get better architecture too

A worst-case bad API...

HI, THIS 15

YOUR SON' SCHOOL.
WERE HAVING SOME
COMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY - /

R

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ ?

~ OH.YES. LITTE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.
g‘ AND I HOPE
- YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

"no API" / "expose the DB" worst case:

@ accept SQL directly via URL or forms...
o (note the security/privacy connection...)

Too many cooks APIs

@ zero APIs is too few, three is too many
@ four is right out

@ somewhere in-between, probably one
(maybe two) is the sweet spot

@ root cause #l1: transition

@ esp. from a "not-really-designed” API
@ or, between technologies/platforms
@ root cause #2: unwillingness to decide
o cfr the "commitment issues” APIDAs
@ root cause #3: org/project structure

19

Why "many APIs" is bad

@ extra work to maintain all of them
@ w/o real benefit to the user,
@ w/o real benefit for refactoring either

o can often be confusing to the user (must
learn them all and choose/pick one?)

@ sometimes you can perform fask A in one
API, task B in another, but in neither can
you do both needed tasks A and B

o of course, API transitioning/versioning is a
very hard problem (no silver bullets...)

What to do instead

@ "LAYERING" APIs is OK

@ ONE lowest-level API -- exposing all the
nuts and bolts of the system's logical
architecture (NOT implementation!-)

@ it's OK if it's user-unfriendly, hard to use,

a little bit underdocumented, &c

@ as long as it's full-power, high-
performance, transparently debuggable

@ because all OTHER APIs (one or more)
are built entirely ON TOP OF the lowest-
level one (no system internals involved)

21

API Transition: must plan!

@ to err is human: you have a so-so API (or
worse;-), have designed a better one, and
want to fransition all your users over fo it

@ "big-bang" transition (breaking all existing
users) is right out: must take it in steps

@ 1+ releases where using the old API still
works -- but with clear, copious warnings

@ tutorials & docs to help transitioning
@ no new functionality in old API (motivate!)
@ design to help transition? sometimes...

Fear of commitment
@ AKA, the "let's do both!" syndrome

...BUT OUR PRIMARY
VENDOR CAN'T DELIVER,

I WONDER
WHAT'S ON TV
TONIGHT.

S.Adams E-mail: SCOTTADAMS&AOL.COM

... SHOULD WE RISK A
LAWSUIT OR BUILD A

A PRODUCT THAT NOBODY |

DID HE ASK |
ME TO MAKE| §

A CHOICE? :

WILL 1T BE A REQUEST
FOR INFORMATION OR
AN TMPRACTICAL
SOLUTION?

The "Let's do both!" APIDA

@ why is it bad?
@ to DESIGN is to DECIDE, i.e., to CHOOSE
@ oh boy, that's scary
@ am I going to be ACCOUNTABLE for it?
® I am not worthy (to decide) -- do both

& management-structure / employee
empowerment problems (often, in firms)

@ wishy-washy programmers (rare)

“fear to decide” example

HANDLE WINAPI CreateFile(
in LPCTSTR lpFileName,

in DWORD dwDesiredAccess,

in DWORD dwShareMode,

__in opt i HEBSECURTPIY ATTREBUTES

lpSecurityAttributes,
in DWORD dwCreationDisposition,
o NI DWORD dwFlagsAndAttributes,
__in opt HANDLE hTemplateFile

) ;

\4S
int open(const char *pathname,
int flags, mode t mode);
25

gmpy as a bad example

import gmpy

X
y

gmpy .mpz(23)
X.whatever(45)

...or, equivalently...:

y = gmpy.whatever (23, 45)

o we did fix in gmpy2 (not backwards comp;-)

To decide is human

@ Q to Ken Thompson:

@ "if you were fo design Unix all over again
from scratch, what would you change"?

@ Ken's A:
o "I'd spell "creat" with a trailing E"

o (better A: open is enough—no creat;-)

@ Perfection is not of this world
@ not an OK excuse for "not even trying"

What to do instead

@ have the courage to choose

@ choose to work in environments where
failure (and honest acknowledgment of it,
w/fixes) is not punished, but *encouraged™

o "fail -- but, fail fast!"

@ AKA -- empowering environments

@ you're human -- deal. You WON'T "get it
right the first time". Be humble.

@ Launch fast, and iterate
@ "Rough consensus, and running code"!-)

Inconsistency APIDAs

@ argument ordering
o foo(widget, value) vs bar(value, widget)
@ lexical issues (under_score, MixedCase)
@ this_one(foo) vs TheOther(bar)
@ nomina sunt consequentia rerum (verbs too)

@ RemoveThis/DeleteThat/EraseYonder/ ...

@ plural vs singular: CommitTransaction vs
RollbackTransactions (both w/1+ targets)

@ SomeVeryDetailedSpecificName(x)/blah(y)
@ acronyms: HttpConnect/HTTPSendQuery

29

Why inconsistency?

@ too much Ralph Waldo Emerson?-)

@ but that's against a _foolish_ consistency
@ people, ideas change over fime

@ so do APIs

@ maybe CommitTransaction used to take

only one target, then grew fo take 1+

o different people on the same project
conceptualize (thus name) the same thing in
slightly different (inconsistent) ways

What to do instead

o establish a "data dictionary" (not just
"data": "verbs", too!), 1-1 mapping of words
< concepts in the SW system

@ when a new concept arises, add it & the
appropriate word in the DD _first_

@ before you name any API entry!
@ cost: a little bit more work to coordinate

@ advantages: not just to “external users" of
the API -- like all coding conventions, once
established, it _saves__ decision overhead!

In medio stat virtus

@ navigate very cautiously between pairs of
"extreme" positions, esp. in underlying
technology choices. For example...:

@ what prog. language(s) to support and
how closely to adhere to their "style"s?

@ what protocols (esp. platform-standard or
cross-platform standard ones) &c?

@ extremism is simpler, sharper, attractive...

@ but never works as well as balance, good
taste, and moderation!-)

Prog.language support

@ "sure we have an APL... it's in BrainFork!"

@ whatever language(s) you've chosen to
implement your SW system,

@ there's no good reason to foist it on
everybody else who wants to use your

system's API!
@ avoid langua%e—speciﬁc data

interchange formats in your API (for
example, expose no Python "pickles"!!!)

@ "you can program Fortran in any lang."
@ ..but you shouldn't HAVE to!-)

33

Standard-protocol support

@ don't invent Yet Another Data Format
@ ain't JSON (or YAML) gud enuf 4 ya'?
@ or CSV, FITS, HDF, netCDF, SAIF.. (&c)?
@ and Protocol Buffers, XML, ...
@ you'd better have a darn good xcuse!-)

o if on the web, why not ReST? If not (yet)
on the web, why not ReST _anyway_"?

@ on Windows, COM; on Mac, Applescript

® need more generality? RPC standards --
CORBA, XMLRPC, ... -- why not those?

Debugging, errors, docs

@ you make an API — somebody will (you
hope!-) be _developing_ with/on it

@ they'll make mistakes; so will you
@ good debugging support is a must
@ open-source helps, does NOT suffice

@ error msg “an error was encountered” (!)...
@ docs are hard to write, but precious

@ at least, provide COPIOUS examples!

@ and TEST them routinely (doctest)!

Performance issues

@ a performance-incorrect API can Kill
performance in many, many ways, e.g.:

@ excessive "make-work" in building /
dismantling objects unnecessarily

@ excessive "round trips" through lack of

"batching” facilities
@ improper support for threading/distrib.
@ no or inferior support for async use

@ e.g.: mandatory vs optional callbacks
@ too-picky error-diag timing guarantees

36

Q& A
http://www.aleax.it/europll_adap.pdf

?

