
©2011 Google -- aleax@google.com

What goes wrong in APIs
and how to fix it:

API Design anti-patterns:
http://www.aleax.it/europ11_adap.pdf

When you do software...
...what do you focus on?

functionality: "does a lot of useful stuff"
correctness: "few if any serious bugs"
performance: "what it does, it does fast"
user interface: "looks & feels nice"
security: "no easy target for hackers"
elegance: "easy and smooth to maintain"

...what's missing from the above...?
BTW: all issues best achieved with agile,
incremental development (except security)

2

This talk
I'll tell you what I'm going to tell you
then, I tell you
finally, I tell you what I just told you

now THIS is a classic Pattern, no auntie!-)

concrete examples: scarce, as I don't want
to make (too many) more enemies

except errors I made myself
and stuff nobody could defend (Windows)

3

What’s an API
"Application" (?) "Program Interface"

a collection of functions, data types,
protocols, events, &c, whereby any
software system X can interact with a
given software system Y
Y can be: a library, framework,
application, operating system, web site...
Y's developers are typically responsible
for designing and implementing the API

4

What's an Anti-pattern
a category of counterproductive behaviors
that are often, systematically repeated

can be in: business processes, project
management, design, programming, ...
an anti-pattern write-up should include:

root causes (why did it seem a good
idea at the time?)
effects (why it's actually a bad idea)
interactions (how it helps or hurts
other patterns [or anti-patterns])
remedies (suggestions for fixes)

5

API Design Antipatterns
the very worst APIDA: not having any API

the worst API's the one that's not there
most frequent 1: "just didn't think of it"!

the second worst: not having any design
the API that "just happened"
worse than most other "non-designs"

Too many APIs spoil the broth
"fear of commitment": to design→to choose
inconsistency in APIs
...but wait, there's more...!

6

More kinds of APIDAs
Won't do these justice, either, but...:
"extremes": no balance between concerns

what language(s) to support?
excessive language dependence
excessive language INdependence

what about standard protocols/formats?
ignoring them blithely
rigidly, lavishly letting them "drive"

debugging, error messages, documentation
performance-related APIDAs

7

The very worst APIDA
the worst API is -- no API at all

people just don't think about APIs...!
e.g. check stackoverflow: most common Qs

spidering and scraping websites
simulating keystroke & mouse gestures

some of those Qs are about system testing
most of them are about "missing APIs"

the APIs may not actually be there
~ equivalent, they may be undocumented

8

Why "no API" is bad
people DO need an API

whether you supply it or not
they're gonna "scrape" your UI

or alleged-UI;-)
or, monkeypatch you (if no "hooks")

useless extra load on your system
rendering things that then get ignored

makes their lives miserable
every cosmetic change breaks their SW
gives your "competitors" a nice entry!

9

What to do instead
Offer an API! "Pick an API, any API"...
Should be easy -- you ARE "in their shoes"
Even a simple, weak one's better than none
Document it! or, at least...:

to reduce workload, consider _examples_
may be easier than text to programmers

Keep docs updated!
wrong docs can be worse than none
examples can be tested & should be

10

If you're an unwilling APIer
Make life easy on yourself AND the users:
Follow the yellow-brick road of the "path
of least resistance": de facto standards

for web apps, REST & JSON
for Windows apps, COM
for Mac apps, "Applescript"
...wish there was ONE similarly broad
answer for Linux apps too... ah well!-)

doctest, for the my-only-docs-r-examples
crowd (or as useful supplement to any doc)

11

The accidental API
an "interface" that was never actually
designed as such (also a "didn't think"...).
designing an interface for proper program
access is hard (though interesting) work

(think of what you'd like to USE!)
"but wait, we already have one!"...

often what the UI uses to the backend
sometimes the database schema

"let's use that one -- look, ma, no work"!-)

12

Why "no design" is bad API
if you haven't designed what API you're
exposing, specifically in order to expose it...
...then what you're exposingm is not an API,
but "internal implementation issues"!
what happens when you want to change
the implementation's details?

either you don't (→forego improvements)
or you break your clients,
or you shoulder forever the burden of
dual implementations (real one and API)...

13

What to do instead
THINK
...about your API
would you like to USE it...?

FORGET
...your implementation
definitely at least its details

14

Wtdi: Think
THINK about your API!

"if I was an outside programmer, what
would I want to be doing? And, how?"

"and why?" can't hurt, by the way;-)
don't just think; "walk a mile in their
shoes" (e.g., your auxiliary scripts)

I dislike big-design-up-front, BUT...
...APIs are THE exception to this!
(well OK, security/privacy too;-)

15

Wtdi: Forget
FORGET about your current implementation

as an implementation, inevitably it's chock
full of specific details, of course
or, think about at least 2-3 alternative
ones you might want to try in the future
what's common to ALL?
what changes w/every implementation is
"an accident", irrelevant to your API
what stays the same is "the substance",
what really must be in the API

the CONCEPTS your SW is about!
16

Wtdi: why?
isn't this API design stuff a lot of work...?
yes, some -- BUT...

the ROI on API design efforts is amazing!
not only does it enhance your API,
the insight it gives on your overall
SW's design is hard to obtain otherwise

+: a strong API helps you properly divvy
up the system (as little as feasible "in
the core", as much as can be, "outside"!)

so you get better architecture too

17

A worst-case bad API...

"no API" / "expose the DB" worst case:
accept SQL directly via URL or forms...
(note the security/privacy connection...)

18

Too many cooks APIs
zero APIs is too few, three is too many
four is right out
somewhere in-between, probably one
(maybe two) is the sweet spot
root cause #1: transition

esp. from a "not-really-designed" API
or, between technologies/platforms

root cause #2: unwillingness to decide
cfr the "commitment issues" APIDAs

root cause #3: org/project structure

19

Why "many APIs" is bad
extra work to maintain all of them

w/o real benefit to the user,
w/o real benefit for refactoring either

can often be confusing to the user (must
learn them all and choose/pick one?)

sometimes you can perform task A in one
API, task B in another, but in neither can
you do both needed tasks A and B

of course, API transitioning/versioning is a
very hard problem (no silver bullets...)

20

What to do instead
"LAYERING" APIs is OK

ONE lowest-level API -- exposing all the
nuts and bolts of the system's logical
architecture (NOT implementation!-)
it's OK if it's user-unfriendly, hard to use,
a little bit underdocumented, &c

as long as it's full-power, high-
performance, transparently debuggable

because all OTHER APIs (one or more)
are built entirely ON TOP OF the lowest-
level one (no system internals involved)

21

API Transition: must plan!
to err is human: you have a so-so API (or
worse;-), have designed a better one, and
want to transition all your users over to it
"big-bang" transition (breaking all existing
users) is right out: must take it in steps

1+ releases where using the old API still
works -- but with clear, copious warnings
tutorials & docs to help transitioning
no new functionality in old API (motivate!)
design to help transition? sometimes...

22

Fear of commitment
AKA, the "let's do both!" syndrome

23

The "Let's do both!" APIDA
why is it bad?

to DESIGN is to DECIDE, i.e., to CHOOSE
oh boy, that's scary

am I going to be ACCOUNTABLE for it?
I am not worthy (to decide) -- do both

management-structure / employee
empowerment problems (often, in firms)
wishy-washy programmers (rare)

24

"fear to decide" example
HHANDLE WINAPI CreateFile(

 __in LPCTSTR lpFileName,
 __in DWORD dwDesiredAccess,
 __in DWORD dwShareMode,
 __in_opt LPSECURITY_ATTRIBUTES
 lpSecurityAttributes,
 __in DWORD dwCreationDisposition,
 __in DWORD dwFlagsAndAttributes,
 __in_opt HANDLE hTemplateFile
);
 vs
 int open(const char *pathname,
 int flags, mode_t mode);

25

gmpy as a bad example
Himport gmpy

x = gmpy.mpz(23)
y = x.whatever(45)

...or, equivalently...:

y = gmpy.whatever(23, 45)

we did fix in gmpy2 (not backwards comp;-)

26

To decide is human
Q to Ken Thompson:

"if you were to design Unix all over again
from scratch, what would you change"?

Ken's A:
"I'd spell "creat" with a trailing E"
(better A: open is enough→no creat;-)

Perfection is not of this world
not an OK excuse for "not even trying"

27

What to do instead
have the courage to choose
choose to work in environments where
failure (and honest acknowledgment of it,
w/fixes) is not punished, but *encouraged*

"fail -- but, fail fast!"
AKA -- empowering environments

you're human -- deal. You WON'T "get it
right the first time". Be humble.

Launch fast, and iterate
"Rough consensus, and running code"!-)

28

Inconsistency APIDAs
argument ordering

foo(widget, value) vs bar(value, widget)
lexical issues (under_score, MixedCase)

this_one(foo) vs TheOther(bar)
nomina sunt consequentia rerum (verbs too)

RemoveThis/DeleteThat/EraseYonder/...
plural vs singular: CommitTransaction vs
RollbackTransactions (both w/1+ targets)
SomeVeryDetailedSpecificName(x)/blah(y)
acronyms: HttpConnect/HTTPSendQuery

29

Why inconsistency?
too much Ralph Waldo Emerson?-)

but that's against a _foolish_ consistency
people, ideas change over time

so do APIs
maybe CommitTransaction used to take
only one target, then grew to take 1+

different people on the same project
conceptualize (thus name) the same thing in
slightly different (inconsistent) ways

30

What to do instead
establish a "data dictionary" (not just
"data": "verbs", too!), 1-1 mapping of words
↔ concepts in the SW system
when a new concept arises, add it & the
appropriate word in the DD _first_

before you name any API entry!
cost: a little bit more work to coordinate
advantages: not just to "external users" of
the API -- like all coding conventions, once
established, it _saves_ decision overhead!

31

In medio stat virtus
navigate very cautiously between pairs of
"extreme" positions, esp. in underlying
technology choices. For example...:

what prog. language(s) to support and
how closely to adhere to their "style"s?
what protocols (esp. platform-standard or
cross-platform standard ones) &c?

extremism is simpler, sharper, attractive...
but never works as well as balance, good
taste, and moderation!-)

32

Prog.language support
"sure we have an API... it's in BrainFork!"

whatever language(s) you've chosen to
implement your SW system,
there's no good reason to foist it on
everybody else who wants to use your
system's API!
avoid language-specific data
interchange formats in your API (for
example, expose no Python "pickles"!!!)

"you can program Fortran in any lang."
...but you shouldn't HAVE to!-)

33

Standard-protocol support
don't invent Yet Another Data Format

ain't JSON (or YAML) gud enuf 4 ya'?
or CSV, FITS, HDF, netCDF, SAIF... (&c)?

and Protocol Buffers, XML, ...
you'd better have a darn good xcuse!-)

if on the web, why not ReST? If not (yet)
on the web, why not ReST _anyway_?
on Windows, COM; on Mac, Applescript
need more generality? RPC standards --
CORBA, XMLRPC, ... -- why not those?

34

Debugging, errors, docs
you make an API → somebody will (you
hope!-) be _developing_ with/on it

they'll make mistakes; so will you
good debugging support is a must
open-source helps, does NOT suffice

error msg "an error was encountered" (!)...
docs are hard to write, but precious

at least, provide COPIOUS examples!
and TEST them routinely (doctest)!

35

Performance issues
a performance-incorrect API can kill
performance in many, many ways, e.g.:

excessive "make-work" in building /
dismantling objects unnecessarily
excessive "round trips" through lack of
"batching" facilities
improper support for threading/distrib.
no or inferior support for async use

e.g.: mandatory vs optional callbacks
too-picky error-diag timing guarantees

36

Q & A
http://www.aleax.it/europ11_adap.pdf

37

? !

